Satellite Imagery Noising With Generative Adversarial Networks
نویسندگان
چکیده
Using satellite imagery and remote sensing data for supervised self-supervised learning problems can be quite challenging when parts of the underlying datasets are missing due to natural phenomena (clouds, fog, haze, mist, etc.). Solving this problem will improve augmentation make use it in a world where represents great resource exploit any big pipeline setup. In paper, authors present generative adversarial network (GANs) model that generate atmospheric noise serves as preprocessing tool produce input machine algorithms.
منابع مشابه
Enhancing Underwater Imagery using Generative Adversarial Networks
Autonomous underwater vehicles (AUVs) rely on a variety of sensors – acoustic, inertial and visual – for intelligent decision making. Due to its non-intrusive, passive nature, and high information content, vision is an attractive sensing modality, particularly at shallower depths. However, factors such as light refraction and absorption, suspended particles in the water, and color distortion af...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملConstruction with Generative Adversarial Networks
Three-dimensional (3D) Reconstruction is a vital and challenging research topic in advanced computer graphics and computer vision due to the intrinsic complexity and computation cost. Existing methods often produce holes, distortions and obscure parts in the reconstructed 3D models which are not adequate for real usage. The focus of this paper is to achieve high quality 3D reconstruction perfor...
متن کاملEvolutionary Generative Adversarial Networks
Generative adversarial networks (GAN) have been effective for learning generative models for real-world data. However, existing GANs (GAN and its variants) tend to suffer from training problems such as instability and mode collapse. In this paper, we propose a novel GAN framework called evolutionary generative adversarial networks (E-GAN) for stable GAN training and improved generative performa...
متن کاملUnrolled Generative Adversarial Networks
We introduce a method to stabilize Generative Adversarial Networks (GANs) by defining the generator objective with respect to an unrolled optimization of the discriminator. This allows training to be adjusted between using the optimal discriminator in the generator’s objective, which is ideal but infeasible in practice, and using the current value of the discriminator, which is often unstable a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Cognitive Informatics and Natural Intelligence
سال: 2021
ISSN: ['1557-3958', '1557-3966']
DOI: https://doi.org/10.4018/ijcini.2021010102